If $a_1, a_2, a_3 …………$ an are in $A.P$ and $a_1 + a_4 + a_7 + …………… + a_{16} = 114$, then $a_1 + a_6 + a_{11} + a_{16}$ is equal to

  • [JEE MAIN 2019]
  • A

    $76$

  • B

    $64$

  • C

    $98$

  • D

    $38$

Similar Questions

The $20^{\text {th }}$ term from the end of the progression $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots .,-129 \frac{1}{4}$ is :-

  • [JEE MAIN 2024]

The value of $\sum\limits_{r = 1}^n {\log \left( {\frac{{{a^r}}}{{{b^{r - 1}}}}} \right)} $ is

Let $S_{1}$ be the sum of first $2 n$ terms of an arithmetic progression. Let, $S_{2}$ be the sum of first $4n$ terms of the same arithmetic progression. If $\left( S _{2}- S _{1}\right)$ is $1000,$ then the sum of the first $6 n$ terms of the arithmetic progression is equal to:

  • [JEE MAIN 2021]

If the ${p^{th}},\;{q^{th}}$ and ${r^{th}}$ term of an arithmetic sequence are $a , b$ and $c$ respectively, then the value of $[a(q - r)$ + $b(r - p)$ $ + c(p - q)] = $

Let $a_1 , a_2, a_3, .... , a_n$, be in $A.P$. If $a_3 + a_7 + a_{11} + a_{15} = 72$ , then the sum of its first $17$ terms is equal to

  • [JEE MAIN 2016]