Consider an electromagnetic wave propagating in vacuum . Choose the correct statement

  • [JEE MAIN 2016]
  • A

    For an electromagnetic wave propagating in $+y$ direction the electric field is $\vec E = \frac{1}{{\sqrt 2 }}\,{E_{yz}}\,\left( {x,t} \right)\,\hat z$ and the magnetic field is $\vec B = \frac{1}{{\sqrt 2 }}\,{B_z}\,\left( {x,t} \right)\hat y$ 

  • B

    For an electromagnetic wave propagating in $+y$ direction the electric field is $\vec E = \frac{1}{{\sqrt 2 }}\,{E_{yz}}\,\left( {x,t} \right)\,\hat y$ and the magnetic field is $\vec B = \frac{1}{{\sqrt 2 }}\,B_{yz}\,\left( {x,t} \right)\hat z$

  • C

    For an electromagnetic wave propagating in $+x$ direction the electric field is $\vec E = \frac{1}{{\sqrt 2 }}\,{E_{yz}}\,\left( {y,z,t} \right)\,\left( {\hat y + \hat z} \right)$ and the magnetic field is $\vec B = \frac{1}{{\sqrt 2 }}\,B_{yz}\,\left( {y,z,t} \right)\,\left( {\hat y + \hat z} \right)$

  • D

    For an electromagnetic wave propagating in $+x$ direction the electric field is $\vec E = \frac{1}{{\sqrt 2 }}\,{E_{yz}}\,\left( {x,t} \right)\,\left( {\hat y - \hat z} \right)$ and the magnetic field is $\vec B = \frac{1}{{\sqrt 2 }}\,B_{yz}\,\left( {x,t} \right)\,\left( {\hat y + \hat z} \right)$

Similar Questions

A plane electromagnetic wave of wavelength $\lambda $ has an intensity $I.$  It is propagating along the positive $Y-$  direction. The allowed expressions for the electric and magnetic fields are given by

  • [JEE MAIN 2018]

A velocity selector consists of electric field $\overrightarrow{ E }= E \hat{ k }$ and magnetic field $\overrightarrow{ B }= B \hat{ j }$ with $B =12 mT$.

The value $E$ required for an electron of energy $728 eV$ moving along the positive $x$-axis to pass undeflected is:

(Given, , ass of electron $=9.1 \times 10^{-31} kg$ )

  • [JEE MAIN 2022]

The electric field associated with an em wave in vacuum is given by $\vec{E}=\hat{i} 40 \cos \left(k z-6 \times 10^{8} t\right)$ where $E, x$ and $t$ are in $volt/m,$ meter and seconds respectively. The value of wave vector $k$ is....$ m^{-1}$

  • [AIPMT 2012]

The electric field of a plane electromagnetic wave is given by

$\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}} \cos (\mathrm{kz}+\omega \mathrm{t})$ At $\mathrm{t}=0,$ a positively charged particle is at the point $(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(0,0, \frac{\pi}{\mathrm{k}}\right) .$ If its instantaneous velocity at $(t=0)$ is $v_{0} \hat{\mathrm{k}},$ the force acting on it due to the wave is

  • [JEE MAIN 2020]

In an electromagnetic wave in free space the root mean square value of the electric field is $E_{rms} = 6\, V m^{-1}$ The peak value of the magnetic field is

  • [NEET 2017]