8.Electromagnetic waves
medium

Consider an electromagnetic wave propagating in vacuum . Choose the correct statement

A

For an electromagnetic wave propagating in $+y$ direction the electric field is $\vec E = \frac{1}{{\sqrt 2 }}\,{E_{yz}}\,\left( {x,t} \right)\,\hat z$ and the magnetic field is $\vec B = \frac{1}{{\sqrt 2 }}\,{B_z}\,\left( {x,t} \right)\hat y$ 

B

For an electromagnetic wave propagating in $+y$ direction the electric field is $\vec E = \frac{1}{{\sqrt 2 }}\,{E_{yz}}\,\left( {x,t} \right)\,\hat y$ and the magnetic field is $\vec B = \frac{1}{{\sqrt 2 }}\,B_{yz}\,\left( {x,t} \right)\hat z$

C

For an electromagnetic wave propagating in $+x$ direction the electric field is $\vec E = \frac{1}{{\sqrt 2 }}\,{E_{yz}}\,\left( {y,z,t} \right)\,\left( {\hat y + \hat z} \right)$ and the magnetic field is $\vec B = \frac{1}{{\sqrt 2 }}\,B_{yz}\,\left( {y,z,t} \right)\,\left( {\hat y + \hat z} \right)$

D

For an electromagnetic wave propagating in $+x$ direction the electric field is $\vec E = \frac{1}{{\sqrt 2 }}\,{E_{yz}}\,\left( {x,t} \right)\,\left( {\hat y - \hat z} \right)$ and the magnetic field is $\vec B = \frac{1}{{\sqrt 2 }}\,B_{yz}\,\left( {x,t} \right)\,\left( {\hat y + \hat z} \right)$

(JEE MAIN-2016)

Solution

Wave in $X-$ direction means $E$ and $B$ should be function of $x$ and $t$

$\overset\frown{y}-\overset\frown{z}\,\bot \,\overset\frown{y}+\overset\frown{z}\,$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.