Consider an ellipse with foci at $(5,15)$ and $(21,15)$. If the $X$-axis is a tangent to the ellipse, then the length of its major axis equals

  • [KVPY 2009]
  • A

    $17$

  • B

    $34$

  • C

    $13$

  • D

    $\sqrt{416}$

Similar Questions

The area (in sq, units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$ is :

  • [JEE MAIN 2015]

P is any point on the ellipse $9{x^2} + 36{y^2} = 324$, whose foci are $S$ and $S’$. Then $SP + S'P$ equals

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{36}+\frac{y^2} {16}=1$

The equation of the normal at the point $(2, 3)$ on the ellipse $9{x^2} + 16{y^2} = 180$, is

The locus of point of intersection of two perpendicular tangent of the ellipse  $\frac{{{x^2}}}{{{9}}} + \frac{{{y^2}}}{{{4}}} = 1$ is :-