Find the coordinates of the foci, the rertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $16 x^{2}+y^{2}=16$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given equation is $16 x^{2}+y^{2}=16$

It can be written as

$16 x^{2}+y^{2}=16$

Or, $\frac{x^{2}}{1}+\frac{y^{2}}{16}=1$

Or,  $\frac{ x ^{2}}{1^{2}}+\frac{y^{2}}{4^{2}}=1$    ........ $(1)$

Here, the denominator of $\frac{ x ^{2}}{4^{2}}$ is greater than the denominator of $\frac{ x ^{2}}{1^{2}}$. 

Therefore, the major axis is along the $y-$ axis, while the minor axis is along the $x-$ axis.

On comparing equation $(1)$ with $\frac{ x ^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ we obtain $b =1$ and $a =4$

$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{16-1}=\sqrt{15}$

Therefore,

The coordinates of the foci are $(0, \,\pm \sqrt{15})$

The coordinates of the vertices are $(0,\,±4)$

Length of major axis $=2 a=8$

Length of minor axis $=2 b =2$

Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{15}}{4}$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 1}{4}=\frac{1}{2}$

Similar Questions

If the normal at one end of the latus rectum of an ellipse  $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ passes through one end of the minor axis then :

If the length of the minor axis of ellipse is equal to half of the distance between the foci, then the eccentricity of the ellipse is :

  • [JEE MAIN 2024]

Let the line $y=m x$ and the ellipse $2 x^{2}+y^{2}=1$ intersect at a ponit $\mathrm{P}$ in the first quadrant. If the normal to this ellipse at $P$ meets the co-ordinate axes at $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ and $(0, \beta),$ then $\beta$ is equal to

  • [JEE MAIN 2020]

If $P \equiv (x,\;y)$, ${F_1} \equiv (3,\;0)$, ${F_2} \equiv ( - 3,\;0)$ and $16{x^2} + 25{y^2} = 400$, then $P{F_1} + P{F_2}$ equals

  • [IIT 1998]

The position of the point $(1, 3)$ with respect to the ellipse $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$