Find the coordinates of the foci, the rertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $16 x^{2}+y^{2}=16$
The given equation is $16 x^{2}+y^{2}=16$
It can be written as
$16 x^{2}+y^{2}=16$
Or, $\frac{x^{2}}{1}+\frac{y^{2}}{16}=1$
Or, $\frac{ x ^{2}}{1^{2}}+\frac{y^{2}}{4^{2}}=1$ ........ $(1)$
Here, the denominator of $\frac{ x ^{2}}{4^{2}}$ is greater than the denominator of $\frac{ x ^{2}}{1^{2}}$.
Therefore, the major axis is along the $y-$ axis, while the minor axis is along the $x-$ axis.
On comparing equation $(1)$ with $\frac{ x ^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ we obtain $b =1$ and $a =4$
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{16-1}=\sqrt{15}$
Therefore,
The coordinates of the foci are $(0, \,\pm \sqrt{15})$
The coordinates of the vertices are $(0,\,±4)$
Length of major axis $=2 a=8$
Length of minor axis $=2 b =2$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{15}}{4}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 1}{4}=\frac{1}{2}$
If the normal at one end of the latus rectum of an ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ passes through one end of the minor axis then :
If the length of the minor axis of ellipse is equal to half of the distance between the foci, then the eccentricity of the ellipse is :
Let the line $y=m x$ and the ellipse $2 x^{2}+y^{2}=1$ intersect at a ponit $\mathrm{P}$ in the first quadrant. If the normal to this ellipse at $P$ meets the co-ordinate axes at $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ and $(0, \beta),$ then $\beta$ is equal to
If $P \equiv (x,\;y)$, ${F_1} \equiv (3,\;0)$, ${F_2} \equiv ( - 3,\;0)$ and $16{x^2} + 25{y^2} = 400$, then $P{F_1} + P{F_2}$ equals
The position of the point $(1, 3)$ with respect to the ellipse $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$