Consider the equation ${x^2} + \alpha x + \beta  = 0$ having roots $\alpha ,\beta $ such that $\alpha  \ne \beta $ .Also consider the inequality $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ ,then

  • A

    inequality is satisfied by exactly two integral values of $y$

  • B

    inequality is satisfied by all values of $y \in  (-4, 2)$

  • C

    Roots of the equation are of same sign

  • D

    ${x^2} + \alpha x + \beta  > 0\,\forall \,x \in \,\left[ { - 1,0} \right]$

Similar Questions

Let $f(x)=x^4+a x^3+b x^2+c$ be a polynomial with real coefficients such that $f(1)=-9$. Suppose that $i \sqrt{3}$ is a root of the equation $4 x^3+3 a x^2+2 b x=0$, where $i=\sqrt{-1}$. If $\alpha_1, \alpha_2, \alpha_3$, and $\alpha_4$ are all the roots of the equation $f(x)=0$, then $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ is equal to. . . . . .

  • [IIT 2024]

Number of positive integral values of $'K'$ for which the equation $k = \left| {x + \left| {2x - 1} \right|} \right| - \left| {x - \left| {2x - 1} \right|} \right|$ has exactly three real solutions, is

The roots of the equation ${x^4} - 2{x^3} + x = 380$ are

$\alpha$, $\beta$ ,$\gamma$  are roots of equatiuon $x^3 -x -1 = 0$ then equation whose roots are $\frac{1}{{\beta  + \gamma }},\frac{1}{{\gamma  + \alpha }},\frac{1}{{\alpha  + \beta }}$ is

If $a, b, c, d$ are four distinct numbers chosen from the set $\{1,2,3, \ldots, 9\}$, then the minimum value of $\frac{a}{b}+\frac{c}{d}$ is

  • [KVPY 2017]