- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
normal
Let $x, y, z$ be positive integers such that $HCF$ $(x, y, z)=1$ and $x^2+y^2=2 z^2$. Which of the following statements are true?
$I$. $4$ divides $x$ or $4$ divides $y$.
$II$. $3$ divides $x+y$ or $3$ divides $x-y$.
$III$. $5$ divides $z\left(x^2-y^2\right)$.
A
$I$ and $II$ only
B
$II$ and $III$ only
C
$II$ only
D
$III$ only
(KVPY-2017)
Solution
(b)
We have
$\quad x^2+y^2=2 z^2 \text { and HCF }(x, y, z)=1$
$x=1, y=7, z=5$
$\text { Then, } \quad 1+49=50$
$\text { or } \quad x=7, y=1, z=5$
$\quad 49+1=50$
$\therefore 4 \text { not divides } x \text { or } y.$
$\therefore \text { Ist statement is wrong. }$
$\quad x+y=7+1=8$
$\quad x-y=7-1=6$
Standard 11
Mathematics