The number of integral values of $m$ for which the quadratic expression, $(1 + 2m)x^2 -2(1+ 3m)x + 4(1 + m),$ $x\in R,$ is always positive, is

  • [JEE MAIN 2019]
  • A

    $3$

  • B

    $8$

  • C

    $7$

  • D

    $6$

Similar Questions

Let $\alpha, \beta, \gamma$ be the three roots of the equation $x ^3+ bx + c =0$. If $\beta \gamma=1=-\alpha$, then $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ is equal to $......$.

  • [JEE MAIN 2023]

The equation $e^{4 x}+8 e^{3 x}+13 e^{2 x}-8 e^x+1=0, x \in R$ has:

  • [JEE MAIN 2023]

Let $x_1, x_2, \ldots, x_6$ be the roots of the polynomial equation $x^6+2 x^5+4 x^4+8 x^3+16 x^2+32 x+64=0$. Then,

  • [KVPY 2017]

Consider the quadratic equation $n x^2+7 \sqrt{n x+n}=0$ where $n$ is a positive integer. Which of the following statements are necessarily correct?

$I$. For any $n$, the roots are distinct.

$II$. There are infinitely many values of $n$ for which both roots are real.

$III$. The product of the roots is necessarily an integer.

  • [KVPY 2016]

The number of real solution of equation $(\frac{3}{2})^x =  -x^2 + 5x-10$ :-