The number of integral values of $m$ for which the quadratic expression, $(1 + 2m)x^2 -2(1+ 3m)x + 4(1 + m),$ $x\in R,$ is always positive, is
$3$
$8$
$7$
$6$
Let $a$ be the largest real root and $b$ be the smallest real root of the polynomial equation $x^6-6 x^5+15 x^4-20 x^3+15 x^2-6 x+1=0$ Then $\frac{a^2+b^2}{a+b+1}$ is
The number of integers $k$ for which the equation $x^3-27 x+k=0$ has at least two distinct integer roots is
If $x$ is real , the maximum value of $\frac{{3{x^2} + 9x + 17}}{{3{x^2} + 9x + 7}}$ is
The number of solutions of the equation $\log _{(x+1)}\left(2 x^{2}+7 x+5\right)+\log _{(2 x+5)}(x+1)^{2}-4=0, x\,>\,0$, is $....$
The sum of all the real roots of the equation $\left( e ^{2 x }-4\right)\left(6 e ^{2 x }-5 e ^{ x }+1\right)=0$ is