Consider the following statements
$P :$ Suman is brilliant
$Q :$ Suman is rich
$R :$ Suman is honest
The negation of the statement "Suman is brilliant and dishonest if and only if Suman is rich" can be expressed as
$\; \sim \left( {{\rm{Q}} \leftrightarrow \left( {{\rm{P}} \wedge {\rm{\;}} \sim {\rm{R}}} \right)} \right)$
$ \sim {\rm{Q}} \leftrightarrow {\rm{\;}} \sim {\rm{P}} \wedge {\rm{R}}$
${\rm{\;}} \sim \left( {{\rm{P}} \wedge {\rm{\;}} \sim {\rm{R}}} \right) \leftrightarrow Q$
$\; \sim P \wedge \left( {{\rm{Q\;}} \leftrightarrow \sim {\rm{R}}} \right)$
The statement $B \Rightarrow((\sim A ) \vee B )$ is equivalent to
Negation of the conditional : “If it rains, I shall go to school” is
If $p \Rightarrow (\sim p \vee q)$ is false, the truth values of $p$ and $q$ are respectively
If $P \Rightarrow \left( {q \vee r} \right)$ is false, then the truth values of $p, q, r$ are respectively