Consider the following statements 

$P :$ Suman is brilliant

$Q :$ Suman is rich

$R :$ Suman is honest

The negation of the statement "Suman is brilliant and dishonest if and only if Suman is rich" can be expressed as 

  • [AIEEE 2011]
  • A

    $\; \sim \left( {{\rm{Q}} \leftrightarrow \left( {{\rm{P}} \wedge {\rm{\;}} \sim {\rm{R}}} \right)} \right)$

  • B

    $ \sim {\rm{Q}} \leftrightarrow {\rm{\;}} \sim {\rm{P}} \wedge {\rm{R}}$

  • C

    ${\rm{\;}} \sim \left( {{\rm{P}} \wedge {\rm{\;}} \sim {\rm{R}}} \right) \leftrightarrow Q$

  • D

    $\; \sim P \wedge \left( {{\rm{Q\;}} \leftrightarrow \sim {\rm{R}}} \right)$

Similar Questions

The statement $B \Rightarrow((\sim A ) \vee B )$ is equivalent to

  • [JEE MAIN 2023]

Negation of the conditional : “If it rains, I shall go to school” is

The logically equivalent proposition of $p \Leftrightarrow q$ is

If $p \Rightarrow (\sim p \vee q)$ is false, the truth values of $p$ and $q$ are respectively

If $P \Rightarrow \left( {q \vee r} \right)$ is false, then the truth values of $p, q, r$ are respectively

  • [JEE MAIN 2019]