Find the modulus and argument of the complex numbers:
$\frac{1+i}{1-i}$
We have, $\frac{1+i}{1-i}=\frac{1+i}{1-i} \times \frac{1+i}{1+i}=\frac{1-1+2 i}{1+1}=i=0+i$
Now, let us put $0=r \cos \theta, \quad 1=r \sin \theta$
Squaring and adding, $r^{2}=1$ i.e., $r=1$ so that
$\cos \theta=0, \sin \theta=1$
Therefore, $\theta=\frac{\pi}{2}$
Hence, the modulus of $\frac{1+i}{1-i}$ is $1$ and the argument is $\frac{\pi}{2}$.
${\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2}$ is equal to
If $z_1$ is a point on $z\bar{z} = 1$ and $z_2$ is another point on $(4 -3i)z + (4 + 3i)z -15 = 0$, then $|z_1 -z_2|_{min}$ is (where $ i = \sqrt { - 1}$ )
If $|{z_1}| = |{z_2}| = .......... = |{z_n}| = 1,$ then the value of $|{z_1} + {z_2} + {z_3} + ............. + {z_n}|$=
Let $\bar{z}$ denote the complex conjugate of a complex number $z$. If $z$ is a non-zero complex number for which both real and imaginary parts of
$(\bar{z})^2+\frac{1}{z^2}$
are integers, then which of the following is/are possible value($s$) of $|z|$ ?
Let $z_1 = 6 + i$ and $z_2 = 4 -3i$. Let $z$ be a complex number such that $arg\ \left( {\frac{{z - {z_1}}}{{{z_2} - z}}} \right) = \frac{\pi }{2}$, then $z$ satisfies -