Find the modulus and argument of the complex numbers:
$\frac{1+i}{1-i}$
We have, $\frac{1+i}{1-i}=\frac{1+i}{1-i} \times \frac{1+i}{1+i}=\frac{1-1+2 i}{1+1}=i=0+i$
Now, let us put $0=r \cos \theta, \quad 1=r \sin \theta$
Squaring and adding, $r^{2}=1$ i.e., $r=1$ so that
$\cos \theta=0, \sin \theta=1$
Therefore, $\theta=\frac{\pi}{2}$
Hence, the modulus of $\frac{1+i}{1-i}$ is $1$ and the argument is $\frac{\pi}{2}$.
If $\alpha$ and $\beta$ are different complex numbers with $|\beta|=1,$ then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$
Let $z$ be a complex number, then the equation ${z^4} + z + 2 = 0$ cannot have a root, such that
If for complex numbers ${z_1}$ and ${z_2}$, $arg({z_1}/{z_2}) = 0,$ then $|{z_1} - {z_2}|$ is equal to
A real value of $x$ will satisfy the equation $\left( {\frac{{3 - 4ix}}{{3 + 4ix}}} \right) = $ $\alpha - i\beta \,(\alpha ,\beta \,{\rm{real),}}$ if
Let $a = lm\left( {\frac{{1 + {z^2}}}{{2iz}}} \right)$, where $z$ is any non-zero complex number. The set $A = \{ a:\left| z \right| = 1\,and\,z \ne \pm 1\} $ is equal to