If ${z_1},{z_2}$ and ${z_3},{z_4}$ are two pairs of conjugate complex numbers, then $arg\left( {\frac{{{z_1}}}{{{z_4}}}} \right) + arg\left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ equals

  • A

    $0$

  • B

    $\frac{\pi }{2}$

  • C

    $\frac{{3\pi }}{2}$

  • D

    $\pi $

Similar Questions

Let $z$ be complex number such that $\left|\frac{z-i}{z+2 i}\right|=1$ and $|z|=\frac{5}{2} \cdot$ Then the value of $|z+3 i|$ is 

  • [JEE MAIN 2020]

If $5 + ix^3y^2$ and $x^3 + y^2 + 6i$ are conjugate complex numbers and arg $(x + iy) = \theta $ , then ${\tan ^2}\,\theta $ is equal to

If ${z_1}$ and ${z_2}$ are any two complex numbers then $|{z_1} + {z_2}{|^2}$ $ + |{z_1} - {z_2}{|^2}$ is equal to

The amplitude of $0$ is

If $(3 + i)z = (3 - i)\bar z,$then complex number $z$ is