इन दो कथनों पर विचार करें :
$I$. दो चरों वाले संगत रेखीय समीकरणों $(consistent\,linear\,equations)$ के किसी भी युग्म का अद्वितीय हल है।
$II$. ऐसे दो क्रमागत पूर्णांकों का अस्तित्व नहीं हैं जिनके वर्गों का योग $365$ है।
$I$ एवं $II$ दोनों सत्य है
$I$ एवं $II$ दोनों असत्य हैं
$I$ सत्य है एवं $II$ असत्य है
$I$ असत्य है एवं $II$ सत्य है
माना समीकरण $\mathrm{x}^7+3 \mathrm{x}^5-13 \mathrm{x}^3-15 \mathrm{x}=0$ के मूल $\alpha_1, \alpha_2, \ldots, \alpha_7$ हैं तथा $\left|\alpha_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$ हैं तो $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6$ बराबर है____________.
यदि किसी धनपूर्णांक $n$ के लिए, द्विघाती समीकरण
$x(x+1)+(x+1)(x+2)+\ldots+(x+\overline{n-1})(x+n)=10 n$
के दो क्रमिक पूर्णांकीय हल है, तो $n$ बराबर है :
यदि $a < 0$ तब असमिका $a{x^2} - 2x + 4 > 0$ के मूल निम्न द्वारा प्रदर्शित होंगे
$\{ x \in R:|x - 2|\,\, = {x^2}\} = $
समीकरण $|x{|^2}$-$3|x| + 2 = 0$ के वास्तविक हलों की संख्या है