यदि समीकरण $4{x^4} - 24{x^3} + 57{x^2} + 18x - 45 = 0$ का एक मूल $3 + i\sqrt 6 $ है, तब अन्य मूल होंगे
$3 - i\sqrt 6 , \pm \sqrt {\frac{3}{2}} $
$3 - i\sqrt 6 , \pm \frac{3}{{\sqrt 2 }}$
$3 - i\sqrt 6 , \pm \frac{{\sqrt 3 }}{2}$
इनमें से कोई नहीं
$x$ के कितने वास्तविक मानों के लिये समीकरण $\left| {\,3{x^2} + 12x + 6\,} \right| = 5x + 16$ अस्तित्व रखता है
यदि $(x + 1)$ व्यंजक ${x^4} - (p - 3){x^3} - (3p - 5){x^2} + (2p - 7)x + 6$
का एक गुणनखण्ड हो, तो $p = $
माना $y = \sqrt {\frac{{(x + 1)(x - 3)}}{{(x - 2)}}} $ तो $y$ के वास्तविक मानों के लिये $x$ है
यदि $a \in R$ तथा समीकरण $-3(x-[x])^{2}+2(x-[x])+a^{2}=0$
( जहाँ $[x]$ उस बड़े से बड़े पूर्णांक को दर्शाता है जो $\leq \, x$ है) का कोई पूर्णांकीय हल नहीं है, तो $a$ के सभी संभव मान जिस अंतराल में स्थित हैं, वह है:
माना समीकरण $\mathrm{x}^7+3 \mathrm{x}^5-13 \mathrm{x}^3-15 \mathrm{x}=0$ के मूल $\alpha_1, \alpha_2, \ldots, \alpha_7$ हैं तथा $\left|\alpha_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$ हैं तो $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6$ बराबर है____________.