$\lambda $ के किस मान के लिये समीकरण ${x^2} + (2 + \lambda )\,x - \frac{1}{2}(1 + \lambda ) = 0$ के मूलों के वर्गो का योग न्यूनतम होगा
$3/2$
$1$
$1/2$
$11/4$
समीकरण ${x^3} + 3Hx + G = 0$ में यदि $G$ तथा $H$ वास्तविक हों और ${G^2} + 4{H^3} > 0,$ तब मूल होंगे
इन दो कथनों पर विचार करें :
$I$. दो चरों वाले संगत रेखीय समीकरणों $(consistent\,linear\,equations)$ के किसी भी युग्म का अद्वितीय हल है।
$II$. ऐसे दो क्रमागत पूर्णांकों का अस्तित्व नहीं हैं जिनके वर्गों का योग $365$ है।
दो भिन्न बहुपद $f(x)$ और $g(x)$ इस प्रकार हैं: $f(x)=x^2+a x+2 ; \quad g(x)=x^2+2 x+a \text {. }$
यदि समीकरण $f(x)=0, g(x)=0$ का एक शून्यक साझा हो तो, समीकरण $f(x)+g(x)=0$ के शून्यकों का योग होगा :
यदि ${x^3} + 8 = 0$ के मूल $\alpha ,\,\beta$ तथा $\gamma $ हैं, तो वह समीकरण जिसके मूल ${\alpha ^2},{\beta ^2}$ तथा ${\gamma ^2}$ है, होगा
माना $\alpha$ तथा $\beta$ दो वास्तविक संख्याऐं है जिनके लिए $\alpha+\beta=1$ तथा $\alpha \beta=-1$ हैं। माना किसी पूर्णांक $n \geq 1$ के लिए $p _{ n }=(\alpha)^{ n }+(\beta)^{ n }, p _{ n -1}=11$ तथा $p _{ n +1}=29$ हैं। तो $p _{ n }^{2}$ का मान है ........