જો $f(x) = \frac{{\alpha \,x}}{{x + 1}},\;x \ne - 1$. તો, $\alpha $ ની . . . . કિમત માટે $f(f(x)) = x$ થાય.
$\sqrt 2 $
$ - \sqrt 2 $
$1$
$-1$
ધારો કે $f: R \rightarrow R$ એ $f(x)=\frac{2 e^{2 x}}{e^{2 x}+\varepsilon}$ મુજબ વ્યાખ્યાયિત છે. તો $f\left(\frac{1}{100}\right)+f\left(\frac{2}{100}\right)+f\left(\frac{3}{100}\right)+\ldots .+f\left(\frac{99}{100}\right)$ ની કિમંત મેળવો.
આપલે વિધેય $f(x) = \frac{{{a^x} + {a^{ - x}}}}{2},\;(a > 2)$. તો $f(x + y) + f(x - y) = $
અહી $A=\{0,1,2,3,4,5,6,7\} $ આપેલ છે. જો એક-એક અને વ્યાપ્ત વિધેય $f: A \rightarrow A$ ની સંખ્યા મેળવો કે જેથી $f(1)+f(2)=3-f(3)$ થાય.
સમીકરણ $|x\,-\,2| + |x\,-\,1| = x\,-\,3$ ને ઉકેલો.
ધારોકે $A=\{1,2,3,5,8,9\}$, તો $f: A \rightarrow A$ હોય તેવા પ્રત્યેક $f(m \cdot n)=f(m) \cdot f(n)$ માટે $m, n \in A$ થાય તેવા શક્ય વિધેયો $m \cdot n \in A$ ની સંખ્યા $..........$ છે.