જો $f(x) = \frac{{\alpha \,x}}{{x + 1}},\;x \ne - 1$. તો, $\alpha $ ની . . . . કિમત માટે $f(f(x)) = x$ થાય.
$\sqrt 2 $
$ - \sqrt 2 $
$1$
$-1$
જો વિધેય $g(x)$ એ $[-1, 1]$ મા વ્યાખિયાયિત છે અને સમબાજુ ત્રિકોણના બે શિરોબિંદુઓ $(0, 0)$ અને $(x, g(x))$ તથા તેનુ ક્ષેત્રફળ $\frac{\sqrt 3}{4}$ હોય તો $g(x)$ =
જો વિધેય $f : R \rightarrow R$ એ માટે $3f(2x^2 -3x + 5) + 2f(3x^2 -2x + 4) = x^2 -7x + 9\ \ \ \forall x \in R$ વ્યાખ્યાયિત હોય તો $f(5)$ ની કિમત મેળવો.
જો વિધેય એ $f(x + y) = f(x)f(y)$ શરતનું પાલન કરે કે જયાં $x,\;y \in N$ હોય અને $f(1) = 3$અને $\sum\limits_{x = 1}^n {f(x) = 120} $ હોય તો $n$ ની કિંમત મેળવો
વિઘેય $f(x)=\frac{\cos ^{-1}\left(\frac{x^{2}-5 x+6}{x^{2}-9}\right)}{\log _{e}\left(x^{2}-3 x+2\right)} $ નો પ્રદેશ ........ છે.
ધારો કે $f ^1( x )=\frac{3 x +2}{2 x +3}, x \in R -\left\{\frac{-3}{2}\right\}$ છે. $n \geq 2$, માટે $f ^{ n }( x )= f ^1 0 f ^{ n -1}( x )$ પ્રમાણે વ્યાખ્યાયિત કરો.જો $f ^5( x )=\frac{ ax + b }{ bx + a }, \operatorname{gcd}( a , b )=1$, જ્યાં $a$ અને $b$ પરસ્પર અવિભાજ્ય છે,તો $a+b=............$.