1.Relation and Function
medium

Consider the relations $R_1$ and $R_2$ defined as $a R_1 b$ $\Leftrightarrow a^2+b^2=1$ for all $a, b, \in R$ and $(a, b) R_2(c, d)$ $\Leftrightarrow a+d=b+c$ for all $(a, b),(c, d) \in N \times N$. Then

A

 Only $R_1$ is an equivalence relation

B

Only $R_2$ is an equivalence relation

C

$R_1$ and $R_2$ both are equivalence relations

D

 Neither $R_1$ nor $R_2$ is an equivalence relation

(JEE MAIN-2024)

Solution

$a R_1 b \Leftrightarrow a^2+b^2=1 ; a, b \in R$

(a, b) $R_2(c, d) \Leftrightarrow a+d=b+c ;(a, b),(c, d) \in N$

for $R_1$ : Not reflexive symmetric not transitive

for $R_2: R_2$ is reflexive, symmetric and transitive

Hence only $R_2$ is equivalence relation.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.