The values of $a$ and $b$, for which the system of equations    $2 x+3 y+6 z=8$   ;  $x+2 y+a z=5$     ;  $3 x+5 y+9 z=b$  has no solution, are:

  • [JEE MAIN 2021]
  • A

    $a=3, b=13$

  • B

    $a \neq 3, b \neq 13$

  • C

    $a \neq 3, b=3$

  • D

    $a=3, b \neq 13$

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{m{a_1}}&{{b_1}}\\{{a_2}}&{m{a_2}}&{{b_2}}\\{{a_3}}&{m{a_3}}&{{b_3}}\end{array}\,} \right| = $

If $\left| {\begin{array}{*{20}{c}}{a\, + \,1}&{a\, + \,2}&{a\, + \,p}\\{a\, + \,2}&{a\, +\,3}&{a\, + \,q}\\{a\, + \,3}&{a\, + \,4}&{a\, + \,r}\end{array}} \right|$ $= 0$ , then $p, q, r$ are in :

If the system of linear equations $x - 2y + kz = 1$ ; $2x + y + z = 2$ ;  $3x - y - kz = 3$ Has a solution $(x, y, z) \ne 0$, then $(x, y)$ lies on the straight line whose equation is

  • [JEE MAIN 2019]

If $a \ne 6,b,c$ satisfy $\left| {\,\begin{array}{*{20}{c}}a&{2b}&{2c}\\3&b&c\\4&a&b\end{array}\,} \right| = 0,$then $abc = $

The existence of unique solution of the system of equations,  $x+y+z=\beta $ , $5x-y+\alpha z=10$ , $2x+3y-z=6$ depends on