माना प्रेक्षणों के दो समुच्चय $\mathrm{X}=\{11,12,13, \ldots \ldots$, $40,41\}$ तथा $\mathrm{Y}=\{61,62,63, \ldots ., 90,91\}$ है। यदि इनके माध्य क्रमशः $\bar{x}$ तथा $\bar{y}$ हैं तथा $\mathrm{X} \cup \mathrm{Y}$ में सभी प्रेक्षणों का प्रसरण $\sigma^2$ है तो $\left|\overline{\mathrm{x}}+\overline{\mathrm{y}}-\sigma^2\right|$ बराबर है_____________.
$603$
$604$
$605$
$606$
माना चार संख्याओं $3,7, x$ तथा $y ( x > y )$ के माध्य तथा प्रसरण क्रमशः $5$ तथा $10$ है। तो चार संख्याओं $3+2 x , 7+2 y , x + y$ तथा $x - y$ का माध्य ............ है
संख्याओं $a , b , 8,5,10$ का माध्य $6$ तथा इनका प्रसरण $6.8$ है। यदि माध्य के सापेक्ष संख्याओं का मानक विचलन $M$ है, तो $25\,M$ बराबर है
एक कक्षा के पचास छात्रों द्वारा तीन विषयों गणित, भौतिक शास्त्र व रसायन शास्त्र में प्राप्तांकों का माध्य व मानक विचलन नीचे दिए गए हैं
विषय | गणित | भौतिक | रसायन |
माध्य | $42$ | $32$ | $40.9$ |
मानक विचलन | $12$ | $15$ | $20$ |
किस विषय में सबसे अधिक विचलन है तथा किसमें सबसे कम विचलन है ?
एक समूह की पाँच संख्याओं का माध्य $8$ तथा प्रसरण $18$ है तथा दूसरे समूह की $3$ संख्याओं का माध्य $8$ तथा प्रसरण $24$ है। तब संख्याओं के संयुक्त समूह का प्रसरण है
$15$ पदों का मानक विचलन $6$ है। यदि प्रत्येक पद से $1$ घटा दिया जाये, तब मानक विचलन होगा