- Home
- Standard 12
- Physics
Consider two charged metallic spheres $S_{1}$ and $\mathrm{S}_{2}$ of radii $\mathrm{R}_{1}$ and $\mathrm{R}_{2},$ respectively. The electric $\left.\text { fields }\left.\mathrm{E}_{1} \text { (on } \mathrm{S}_{1}\right) \text { and } \mathrm{E}_{2} \text { (on } \mathrm{S}_{2}\right)$ on their surfaces are such that $\mathrm{E}_{1} / \mathrm{E}_{2}=\mathrm{R}_{1} / \mathrm{R}_{2} .$ Then the ratio $\left.\mathrm{V}_{1}\left(\mathrm{on}\; \mathrm{S}_{1}\right) / \mathrm{V}_{2} \text { (on } \mathrm{S}_{2}\right)$ of the electrostatic potentials on each sphere is
$\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)$
$\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)^{3}$
$\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)$
$\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)^{2}$
Solution
$\mathrm{E}_{1}=\frac{\mathrm{KQ}_{1}}{\mathrm{R}_{1}^{2}}$
$\mathrm{E}_{2}=\frac{\mathrm{KQ}_{2}}{\mathrm{R}_{2}^{2}}$
$\frac{E_{1}}{E_{2}}=\frac{R_{1}}{R_{2}}$
$\cfrac{\frac{\mathrm{KQ}_{1}}{\mathrm{R}_{1}^{2}}}{\frac{\mathrm{KQ}_{2}}{\mathrm{R}_{2}^{2}}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}$
$\frac{Q_{1}}{Q_{2}}=\frac{R_{1}^{3}}{R_{2}^{3}}$
$\frac{\mathrm{V}_{1}}{\mathrm{V}_{2}}=\frac{\mathrm{KQ}_{1} / \mathrm{R}_{1}}{\mathrm{KQ}_{2} / \mathrm{R}_{2}}=\frac{\mathrm{R}_{1}^{2}}{\mathrm{R}_{2}^{2}}$