8. Sequences and Series
hard

Consider two G.Ps. $2,2^{2}, 2^{3}, \ldots$ and $4,4^{2}, 4^{3}, \ldots$ of $60$ and $n$ terms respectively. If the geometric mean of all the $60+n$ terms is $(2)^{\frac{225}{8}}$, then $\sum_{ k =1}^{ n } k (n- k )$ is equal to.

A

$560$

B

$1540$

C

$1330$

D

$2600$

(JEE MAIN-2022)

Solution

$\left(\left(2^{1} 2^{2} \cdots 2^{60}\right)\left(4^{1} \cdot 4^{2} \ldots \ldots 4^{ n }\right)\right)^{\frac{1}{60+ n }}=2^{\frac{225}{8}}$

$\left(2^{30 \times 61} 4^{\frac{ n ( n +1)}{2}}\right) \frac{1}{60+ n }=2^{\frac{225}{8}}$

$2^{1830+ n ^{2}+ n }=2^{\frac{(225)(60+ n )}{8}}$

$=8 n ^{2}-217 n +1140=0$

$n =20, \frac{57}{8}$

$\sum_{ k =1}^{ n } nk – k ^{2}=\frac{ n ^{2}( n +1)}{2}-\frac{ n ( n +1)(2 n +1)}{6}$

$=1330$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.