$60$ तथा $n$ पदों की दो $G.P.$ क्रमशः $2,2^2, 2^3, \ldots$ तथा $4,4^2, 4^3, \ldots$ हैं। यदि सभी $60+ n$ पदों का गुणोत्तर माध्य $(2)$ ${ }^{\frac{225}{8}}$ है, तो $\sum \limits_{ k =1}^{ n } k ( n - k )$ बराबर है :

  • [JEE MAIN 2022]
  • A

    $560$

  • B

    $1540$

  • C

    $1330$

  • D

    $2600$

Similar Questions

यदि $2^{10}+2^{9} \cdot 3^{1}+28 \cdot 3^{2}+\ldots+2 \cdot 3^{9}+3^{10}=$ $S -211$, तो $S$ बराबर है

  • [JEE MAIN 2020]

किसी गुणोत्तर श्रेणी का $5$ वाँ, $8$ वाँ तथा $11$ वाँ पद क्रमशः $p, q$ तथा $s$ हैं तो दिखाइए कि $q^{2}=p s$.

यदि किसी गुणोत्तर श्रेणी के पदों का योग $364$, सार्वानुपात $3$ तथा अंतिम पद $243$ है, तो श्रेणी में पदों की संख्या होगी

अनुक्रम $\sqrt 2 ,\;\sqrt {10} ,\;5\sqrt 2 ,\;.......$ का $7$ वाँ पद है

$0.\mathop {423}\limits^{\,\,\,\,\, \bullet \, \bullet \,}  = $

  • [IIT 1973]