અહી બે સમગુણોતર શ્રેણીઓ  $2,2^{2}, 2^{3}, \ldots$ અને $4,4^{2}, 4^{3}, \ldots$ આપેલ છે કે જેમાં અનુક્રમે  $60$ અને $n$ પદ આપેલ છે. જો બધાજ $60+n$ પદોનો સમગુણોતર મધ્યક  $(2)^{\frac{225}{8}}$, હોય તો  $\sum_{ k =1}^{ n } k (n- k )$ ની કિમંત મેળવો.

  • [JEE MAIN 2022]
  • A

    $560$

  • B

    $1540$

  • C

    $1330$

  • D

    $2600$

Similar Questions

સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $1$ છે. તેના ત્રીજા અને પાંચમાં પદોનો સરવાળો $90$ છે. આ સમગુણોત્તર શ્રેણીનો સામાન્ય ગુણોત્તર શોધો. 

સમાગુણોતર શ્રેણીનું $4$મું પદ $500$ છે અને તેનો સામાન્ય ગુણોતર $\frac{1}{m}, m \in N$ છે.ધારોકે આ સમગુણોતર શ્રેણીના પ્રથમ $n$ પદના સરવાળાને $S_n$ વડે દર્શાવાય છે.જો $S_6 > S_5+1$ અને $S_7 < S_6+\frac{1}{2}$ હોય,તો $m$ની શક્ય કિંમતોની સંખ્યા $.........$ છે.

  • [JEE MAIN 2023]

જો $\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty  {\frac{1}{{{{(2r\, - \,1)}^2}}}\,\, = \,\,\frac{{{\pi ^2}}}{8}} $ હોય, તો $\,\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty  {\frac{1}{{{r^2}}}\,\, = \,\,.........} $

સમગુણોત્તર શ્રેણી $\frac{{\sqrt 2  + 1}}{{\sqrt 2  - 1}},\frac{1}{{2 - \sqrt 2 }},\frac{1}{2}.....\,$ ના અનંત પદોનો સરવાળો કેટલો થાય?

જો સમગુણોતર શ્રેણીનું પાંચમું પદ $2$ હોય તો શ્રેણીના નવ પદોનો ગુણાકાર મેળવો. .     

  • [AIEEE 2002]