$m_1$ और $m_2$ द्रव्यमान के दो पिंडों $\left(m_1 > m_2\right)$ को अतन्य हल्की डोरी से जोड़ा जाता है. यह डोरी एक पुली (pully), जिसकी त्रिज्या $R$ तथा उसके घूर्णन अक्ष के सापेक्ष जड़त्व आघूर्ण $I$ है, के ऊपर से गुजरती है. डोरी पुली पर फिसलती नहीं है और पुली बिना घर्षण के घूमती है. इन पिडों को विश्रामावस्था से एक दूसरे से उध्र्वाधर ऊचाई $2 h$ से छोड़ा जाता है. जब दोनों पिड एक दूसरे के पास से गुजरते हैं तो उसकी गति निम्न में से किसके समानुपाती होगी?

  • [KVPY 2016]
  • A

    $\sqrt{\frac{m_1-m_2}{m_1+m_2+\frac{I}{R^2}}}$

  • B

    $\sqrt{\frac{\left(m_1+m_2\right)\left(m_1-m_2\right)}{m_1+m_2+\frac{1}{R^2}}}$

  • C

    $\sqrt{\frac{m_1+m_2+\frac{I}{R^2}}{m_1-m_2}}$

  • D

    $\sqrt{\frac{1}{R^2}}$

Similar Questions

$0.41$ किग्रा द्रव्यमान तथा $10$ मी त्रिज्या की एक वृत्तीय चकती $2$ मी/सै के वेग से बिना फिसले लुढ़कती है। चकती की कुल गतिज ऊर्जा ....... $J$ होगी

जैसा कि चित्र में दिखाया गया है, $m$ द्रव्यमान के गोलक को एक द्रव्यमानरहित डोर से लटकाया गया है। डोर को दूसरी ओर एक उपचक्र की त्रिज्या $r$ और द्रव्यमान $m$ है। जब गोलक को विरामावस्था से छोडा जाता है तो यह ऊर्ध्वाधर दिशा में गिरने लगता है। इस प्रकार गिरते हुए जब गोलक $h$ दूरी तय कर ले तो उपचक्र की कोणीय गति होगी।

  • [JEE MAIN 2020]

लम्बाई $l$ और द्रव्यमान $m$ की एक पतली एकसमान छड़ अपने एक सिरे से गुजर रही क्षैतिज अक्ष पर स्वतंत्र रूप से दोलायमान है। इसकी अधिकतम कोणीय चाल $\omega$ है। इसका द्रव्यमान केन्द्र इस महत्तम ऊँचाई तक उठेगा

  • [AIEEE 2009]

एक पिण्ड का दिये गये अक्ष के परितः जड़त्व आघूर्ण $1.5\, kg\, m^2$ है। आरम्भ में पिण्ड विरामावस्था में है। $1200\, J$ की घूर्णन गतिज ऊर्जा उत्पन्न करने के लिये, उसी अक्ष के परितः $20\, rad / s ^{2}$ का कोणिय त्वरण कितने समयान्तराल तक लगाना होगा ।($s$ में)

  • [JEE MAIN 2019]

एक मीटर लम्बी छड़ी को ऊध्र्वाधर खड़ा करके उसे इस प्रकार गिरने दिया जाता है कि पृथ्वी से जुड़ा सिरा अपने ही स्थान पर स्थिर रहे। छड़ का दूसरा सिरा जब पृथ्वी से टकरायेगा तब उसका वेग ......... $m/s$ होगा ($g=9.8$ मी/सै$^2$)