$R=\{(x, y): y=x+5,$ $x$ એ $4$ થી નાની પ્રાકૃતિક સંખ્યા છે, $x, y \in N \}$ થાય તે રીતે એક સંબંધ $N$ પર વ્યાખ્યાયિત છે. $R$ ને યાદીની રીતે લખો. $R$ નો પ્રદેશ તેમજ વિસ્તાર મેળવો.
$R=\{(x, y): y=x+5, x $ is a natural mumber less than $ 4, x, y \in N \}$
The natural numbers less than $4$ are $1,2,$ and $3 .$
$\therefore R=\{(1,6),(2,7),(3,8)\}$
The domain of $R$ is the set of all first elements of the ordered pairs in the relation.
$\therefore$ Domain of $R=\{1,2,3\}$ The range of $R$ is the set of all second
elements of the ordered pairs in the relation.
$\therefore$ Range of $R=\{6,7,8\}$
જો $A=\{x, y, z\}$ અને $B=\{1,2\}$ તો $A$ થી $B$ ના સંબંધોની સંખ્યા શોધો.
જો $A=\{1,2,3,4,5,6\}$, $R=\{(x, y): y=x+1\}$ થાય તે રીતે સંબંધ $R, A$ થી $A$ પર વ્યાખ્યાયિત છે, તો $R$ નો પ્રદેશ, સહપ્રદેશ તેમજ વિસ્તાર મેળવો.
બે શાંન્ત ગણ $A$ અને $B$ આપેલ છે કે જેથી $n(A) = 2, n(B) = 3 $ હોય તો $A$ થી $B$ પરના કુલ સંબંધની સંખ્યા મેળવો.
પ્રાકૃતિક સંખ્યાગણ પર સંબંધ $R$ એ $\{(a, b) : a - b = 3\}$ દ્વારા વ્યાખ્યાયિત હોય તો $R=$
$R =\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$ થાય તે રીતે વ્યાખ્યાયિત સંબંધનો પ્રદેશ તેમજ વિસ્તાર મેળવો.