જો $R$ એ $Q$ થી $Q$ પરનો $R=\{(a, b): a, b \in Q$ અને $a-b \in Z \}$ થાય તે રીતે વ્યાખ્યાયિત સંબંધ છે. તો બતાવો કે, પ્રત્યેક $a \in Q$ માટે, $(a, a) \in R$
જો $A=\{1,2,3,4,6\} .$ $R=\{ (a,b):a,b \in A,b$ એ $a$ વડે વિભાજ્ય છે. $\} $ થાય તે રીતે સંબંધ $R$ એ $A$ પર વ્યાખ્યાયિત છે, $R$ ને યાદીની રીતે લખો.
બે શાંન્ત ગણ $A$ અને $B$ આપેલ છે કે જેથી $n(A) = 2, n(B) = 3 $ હોય તો $A$ થી $B$ પરના કુલ સંબંધની સંખ્યા મેળવો.
$A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$ અને $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$ તો શું નીચેના વિધાનો સત્ય છે ? $f$ એ $A$ થી $B$ નો સંબંધ છે. પ્રત્યેક વિકલ્પમાં તમારા જવાબની સત્યાર્થતા ચકાસો.
$R=\{(x, y): y=x+5,$ $x$ એ $4$ થી નાની પ્રાકૃતિક સંખ્યા છે, $x, y \in N \}$ થાય તે રીતે એક સંબંધ $N$ પર વ્યાખ્યાયિત છે. $R$ ને યાદીની રીતે લખો. $R$ નો પ્રદેશ તેમજ વિસ્તાર મેળવો.