Define the collections $\left\{ E _1, E _2, E _3, \ldots ..\right\}$ of ellipses and $\left\{ R _1, K _2, K _3, \ldots ..\right\}$ of rectangles as follows : $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$
$K _1$ : rectangle of largest area, with sides parallel to the axes, inscribed in $E _1$;
$E_n$ : ellipse $\frac{x^2}{a_n^2}+\frac{y^2}{b_{n}^2}=1$ of largest area inscribed in $R_{n-1}, n>1$;
$R _{ n }$ : rectangle of largest area, with sides parallel to the axes, inscribed in $E _{ n }, n >1$.
Then which of the following options is/are correct?
$(1)$ The eccentricities of $E _{18}$ and $E _{19}$ are NOT equal
$(2)$ The distance of a focus from the centre in $E_9$ is $\frac{\sqrt{5}}{32}$
$(3)$ The length of latus rectum of $E_Q$ is $\frac{1}{6}$
$(4)$ $\sum_{n=1}^N\left(\right.$ area of $\left.R_2\right)<24$, for each positive integer $N$
$1,2$
$1,3$
$1,4$
$3,4$
The locus of the point of intersection of the perpendicular tangents to the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ is
Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ be an ellipse with foci $F_1$ and $F_2$. Let $AO$ be its semi-minor axis, where $O$ is the centre of the ellipse. The lines $A F_1$ and $A F_2$, when extended, cut the ellipse again at points $B$ and $C$ respectively. Suppose that the $\triangle A B C$ is equilateral. Then, the eccentricity of the ellipse is
In an ellipse the distance between its foci is $6$ and its minor axis is $8$. Then its eccentricity is
The angle of intersection of ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and circle ${x^2} + {y^2} = ab$, is
Let $F_1$ & $F_2$ be the foci of an ellipse $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{9} = 1$ such that a ray from $F_1$ strikes the elliptical mirror at the point $P$ and get reflected. Then equation of angle bisector of the angle between incident ray and reflected ray can be