10-2. Parabola, Ellipse, Hyperbola
hard

Let the tangents at the points $P$ and $Q$ on the ellipse $\frac{x^{2}}{2}+\frac{y^{2}}{4}=1$ meet at the point $R(\sqrt{2}, 2 \sqrt{2}-2)$. If $S$ is the focus of the ellipse on its negative major axis, then $SP ^{2}+ SQ ^{2}$ is equal to.

A

$13$

B

$14$

C

$12$

D

$15$

(JEE MAIN-2022)

Solution

Ellipse is $\frac{x^{2}}{2}+\frac{y^{2}}{4}=1 ; e=\frac{1}{\sqrt{2}} ; S \equiv(0,-\sqrt{2})$

Chord of contact is

$\frac{ x }{\sqrt{2}}+\frac{(2 \sqrt{2}-2) y }{4}=1$

$\frac{ x }{\sqrt{2}}=1-\frac{(\sqrt{2}-1) y }{2} \text { solving with ellipse }$

$y =0, \sqrt{2} \therefore x =\sqrt{2}, 1$

$P \equiv(1, \sqrt{2}) Q \equiv(\sqrt{2}, 0)$

$\therefore( SP )^{2}+( SQ )^{2}=13$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.