Let the tangents at the points $P$ and $Q$ on the ellipse $\frac{x^{2}}{2}+\frac{y^{2}}{4}=1$ meet at the point $R(\sqrt{2}, 2 \sqrt{2}-2)$. If $S$ is the focus of the ellipse on its negative major axis, then $SP ^{2}+ SQ ^{2}$ is equal to.

  • [JEE MAIN 2022]
  • A

    $13$

  • B

    $14$

  • C

    $12$

  • D

    $15$

Similar Questions

Let $\mathrm{A}(\alpha, 0)$ and $\mathrm{B}(0, \beta)$ be the points on the line $5 x+7 y=50$. Let the point $P$ divide the line segment $A B$ internally in the ratio $7: 3$. Let $3 x-$ $25=0$ be a directrix of the ellipse $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ and the corresponding focus be $S$. If from $S$, the perpendicular on the $\mathrm{x}$-axis passes through $\mathrm{P}$, then the length of the latus rectum of $\mathrm{E}$ is equal to

  • [JEE MAIN 2024]

Number of points on the ellipse $\frac{{{x^2}}}{{50}} + \frac{{{y^2}}}{{20}} = 1$ from which pair of perpendicular tangents are drawn to the ellips $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{9}} = 1$

An ellipse inscribed in a semi-circle touches the circular arc at two distinct points and also touches the bounding diameter. Its major axis is parallel to the bounding diameter. When the ellipse has the maximum possible area, its eccentricity is

  • [KVPY 2014]

Tangents at extremities of latus rectum of ellipse $3x^2 + 4y^2 = 12$ form a rhombus of area (in $sq.\ units$) -

In an ellipse $9{x^2} + 5{y^2} = 45$, the distance between the foci is