Values of dissociation constant, $K_a$ are given as follows
Acid | $K_a$ |
$HCN$ | $6.2\times 10^{-10}$ |
$HF$ | $7.2\times 10^{-4}$ |
$HNO_2$ | $4.0\times 10^{-4}$ |
Correct order of increasing base strength of the base $CN^-,F^-$ and $NO_2^-$ will be
$F^- < CN^- < NO_2^-$
$NO_2^- < CN^- < F^-$
$F^- < NO_2^- < CN^-$
$NO_2^- < F^- < CN^-$
$0.01$ moles of a weak acid $HA \left( K _{ a }=2.0 \times 10^{-6}\right)$ is dissolved in $1.0\, L$ of $0.1\, M\, HCl$ solution. The degree of dissociation of $HA$ is ............. $\times 10^{-5}$
(Round off to the Nearest Integer).
[Neglect volume change on adding $HA$. Assume degree of dissociation $<< 1]$
$K _{ a_1,}, K _{ a_2 }$ and $K _{ a_3}$ are the respective ionization constants for the following reactions $(a), (b),$ and $(c)$.
$(a)$ $H _{2} C _{2} O _{4} \rightleftharpoons H ^{+}+ HC _{2} O _{4}^{-}$
$(b)$ $HC _{2} O _{4}^{-} \rightleftharpoons H ^{+}+ HC _{2} O _{4}^{2-}$
$(c)$ $H _{2} C _{2} O _{4} \rightleftharpoons 2 H ^{+}+ C _{2} O _{4}^{2-}$
The relationship between $K_{a_{1}}, K_{ a _{2}}$ and $K_{ a _{3}}$ is given as
$p{K_a}$ value for acetic acid at the experimental temperature is $5$. The percentage hydrolysis of $0.1\,\,M$ sodium acetate solution will be
The ionization constant of $0.1$ $M$ weak acid is $1.74 \times {10^{ - 5}}$ at $298$ $K$ temperature. Calculate $pH$ of its $0.1$ $M$ solution.
In its $0.2\,\, M$ solution, an acid ionises to an extent of $60\%$. Its hydrogen ion concentration is.....$M$