નીચે દર્શાવેલ પ્રયોગ માટે નિદર્શાવકાશ દર્શાવો : એક પાસાને બે વાર ફેંકવામાં આવે છે.
When a die is thrown, the possible outcomes are $1,\,2,\,3,\,4,\,5,$ or $6$.
When a die is thrown two times, the sample is given by $S =\{(x, y): x , y =1,2,3,4,5,6\}$
The number of elements in this sample space is $6 \times 6=36,$ while the sample space is given by :
$S=\{(1,1),\,(1,2),\,(1,3)$, $( 1,4),\,(1,6),\,(2,1)$, $(2,2),\,(2,3),\,(2,4)$, $(2,5),\,(2,6),\,(3,1),$ $(3,2),\,(3,3),\,(3,4)$, $(3,5),$ $(3,6),\,(4,1)\,,(4,2)$, $(4,3),\,(4,4),\,(4,5),\,(4,6)$, $(5,1)\,,(5,2),$ $(5,3)\,,(5,4)\,,(5,5)$, $(5,6),\,(6,1),\,(6,2)$, $(6,3)$, $(6,4),\,(6,5),\,(6,6)\}$
જો $A, B, C$ એ ત્રણ પરસ્પર નિરપેક્ષ ઘટનાઓ છે . બે વિધાનો ${S_1}$ અને ${S_2}$ એ . .
${S_1}\,\,:\,\,A$ અને $B \cup C$ એ નિરપેક્ષ થાય
${S_2}\,\,:\,\,A$ અને $B \cap C$ એ નિરપેક્ષ થાય . તો . .
એક પાસો ફેંકવામાં આવે છે. નીચે આપેલ ઘટનાઓનું વર્ણન કરો : $A :$ સંખ્યા $7$ કરતાં નાની છે. $B :$ સંખ્યા $7$ કરતાં મોટી છે. $C $: સંખ્યા $3$ નો ગુણક છે. $B \cup C$ શોધો
ત્રણ સિક્કાઓને એકવાર ઉછાળવામાં આવે છે. જો ત્રણ છાપ દેખાય તેને ઘટના $A$ , બે છાપ અને એક કાંટો દેખાય તેને ઘટના $B$, ત્રણે કાંટા દેખાય તેને ઘટના $C$ અને પહેલા સિક્કા ઉપર છાપ દેખાય તેને ઘટના $D$ દ્વારા દર્શાવવામાં આવે છે. કઈ ઘટનાઓ પ્રાથમિક છે ?
બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
$A$ અને $C$ પરસ્પર નિવારક છે.
રજાઓમાં વીણાએ ચાર શહેરો $A, B, C$ અને $D$ ની યાદચ્છિક ક્રમમાં યાત્રા કરી છે. શું સંભાવના છે કે એણે $A$ ની યાત્રા $B $ ના તરત પહેલાં જ કરી ?