Determine $n$ if
$^{2 n} C_{3}:\,^{n} C_{3}=12: 1$
$\frac{{^{2n}{C_3}}}{{^n{C_3}}} = \frac{{12}}{1}$
$\Rightarrow \frac{(2 n) !}{3 !(2 n-3) !} \times \frac{3 !(n-3) !}{n !}=\frac{12}{1}$
$\Rightarrow \frac{(2 n)(2 n-1)(2 n-2)(2 n-3) !}{(2 n-3) !} \times \frac{(n-3) !}{n(n-1)(n-2)(n-3) !}=12$
$\Rightarrow \frac{2(2 n-1)(2 n-2)}{(n-1)(n-2)}=12$
$\Rightarrow \frac{4(2 n-1)(n-1)}{(n-1)(n-2)}=12$
$\Rightarrow \frac{(2 n-1)}{(n-2)}=3$
$\Rightarrow 2 n-1=3(n-2)$
$\Rightarrow 2 n-1=3 n-6$
$\Rightarrow 3 n-2 n=-1+6$
$\Rightarrow n=5$
The number of words (with or without meaning) that can be formed from all the letters of the word $"LETTER"$ in which vowels never come together is
If $^{n} C _{9}=\,\,^{n} C _{8},$ find $^{n} C _{17}$
The value of $\sum\limits_{r = 0}^{n - 1} {\frac{{^n{C_r}}}{{^n{C_r} + {\,^n}{C_{r + 1}}}}} $ equals
What is the number of ways of choosing $4$ cards from a pack of $52$ playing cards? In how many of these
two are red cards and two are black cards,