જો $A=\{1,2\}$ અને $B=\{3,4\}$ તો $A$ થી $B$ ના સંબંધની સંખ્યા શોધો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have,

$A \times B=\{(1,3),(1,4),(2,3),(2,4)\}$

Since $n( A \times B )=4,$ the number of subsets of $A \times B$ is $2^{4} .$

Therefore, the number of relations from $A$ into $B$ will be $2^{4}$.

Similar Questions

$R =\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$ થાય તે રીતે વ્યાખ્યાયિત સંબંધનો પ્રદેશ તેમજ વિસ્તાર મેળવો. 

જો $A=\{x, y, z\}$ અને $B=\{1,2\}$ તો $A$ થી $B$ ના સંબંધોની સંખ્યા શોધો.

પ્રાકૃતિક સંખ્યાગણ પર સંબંધ $R$ એ $\{(a, b) : a - b = 3\}$ દ્વારા વ્યાખ્યાયિત હોય તો $R=$

$R$ એ $N$ થી $N$ નો સંબંધ છે. $R = \{ (a,b):a,b \in N$ અને $a = {b^2}\} $ થાય તે રીતે વ્યાખ્યાયિત છે, તો શું નીચેનાં વિધાનો સત્ય છે? જો $(a, b) \in R,$ તો $(b, a) \in R$ પ્રત્યેક વિધાનમાં તમારા જવાબની સત્યાર્થતા ચકાસો.

$R=\{(x, y): y=x+5,$ $x$ એ $4$ થી નાની પ્રાકૃતિક સંખ્યા છે, $x, y \in N \}$ થાય તે રીતે એક સંબંધ $N$ પર વ્યાખ્યાયિત છે. $R$ ને યાદીની રીતે લખો. $R$ નો પ્રદેશ તેમજ વિસ્તાર મેળવો.