$A=\{1,2,3, \ldots, 14\} .$ $R = \{ (x,y):3x - y = 0,$ જ્યાં $x,y \in A\} .$ જો એ $A$ થી $A$ નો સંબંધ હોય, તો $R$ નો પ્રદેશ, સહપ્રદેશ અને વિસ્તાર મેળવો.
The relation $R$ from $A$ to $A$ is given as $R = \{ (x,y):3x - y = 0,{\rm{ }}$ where $x,y \in A\} $
ie., $R=\{(x, y): 3 x=y, $ where $ x, y \in A\}$
$\therefore R=\{(1,3),(2,6),(3,9),(4,12)\}$
The domain of $R$ is the set of all first elements of the ordered pairs in the relation.
$\therefore$ Domain of $R=\{1,2,3,4\}$
The whole set $A$ is he codomain of the relation $R$.
$\therefore$ Codomain of $R=A=\{1,2,3 \ldots .14\}$
The range of $R$ is the set of all second elements of the ordered pairs in the relation.
$\therefore$ Range of $R=\{3,6,9,12\}$
પ્રાકૃતિક સંખ્યાગણ પર સંબંધ $R$ એ $\{(a, b) : a - b = 3\}$ દ્વારા વ્યાખ્યાયિત હોય તો $R=$
જો $A=\{1,2,3,4,5,6\}$, $R=\{(x, y): y=x+1\}$ થાય તે રીતે સંબંધ $R, A$ થી $A$ પર વ્યાખ્યાયિત છે, તો $R$ નો પ્રદેશ, સહપ્રદેશ તેમજ વિસ્તાર મેળવો.
જો $A=\{1,2,3,4,6\} .$ $R=\{ (a,b):a,b \in A,b$ એ $a$ વડે વિભાજ્ય છે. $\} $ થાય તે રીતે સંબંધ $R$ એ $A$ પર વ્યાખ્યાયિત છે, $R$ નો પ્રદેશ મેળવો.
$A=\{1,2,3,5\}$ અને $B=\{4,6,9\} .$ $R = \{ (x,y):$ $x$ અને $y$ નો તફાવત અયુગ્મ સંખ્યા છે ${\rm{; }}x \in A,y \in B\} $ થાય - તે રીતે સંબંધ $A$ થી $B$ પર વ્યાખ્યાયિત છે. $R$ ને યાદીની રીતે લખો.
જો $A = \{1, 2, 3\}$ તો $A$ પરના ભિન્ન સંબંધની સંખ્યા મેળવો.