$52$ पत्तों की एक गड्डी में से $5$ पत्तों के संचय की संख्या निर्धारित कीजिए, यदि $5$ पत्तों के प्रत्येक चयन (संचय) में तथ्यतः एक बादशाह है
From a deck of $52$ cards, $5 -$ card combinations have to be made in such a way that in each selection of $5$ cards, there is exactly one king.
In a deck of $52$ cards, there are $4$ kings.
$1$ king can be selected out of $4$ kings in $^{4} C _{1}$ ways.
$4$ cards out of the remaining $48$ cards can be selected in $^{48} C_{4}$ ways. Thus, the
required number of $5 -$ card combinations is $^{4} C_{1} \times^{48} C_{4}$.
$6$ पुस्तकों में से एक या अधिक पुस्तकों को कितने प्रकार से चुना जा सकता है
यदि $\frac{{ }^{n+2} C_{6}}{{ }^{n-2} P_{2}}=11$, है, तो $n$ निम्न में से किस समीकरण को संतुष्ट करता है ?
संख्याओं $1, 2, 3, 4, ...., 200$ द्वारा सभी सम्भव दो गुणनखण्ड बनते हैं। सभी प्राप्त खण्डों में से $5$ के गुणज खण्डों की संख्या है
$9$ लड़के और $4$ लड़कियों से $7$ सदस्यों की एक समिति बनानी हैं यह कितने प्रकार से किया जा सकता है, जबकि समिति में न्यूनतम $3$ लड़कियाँ हैं ?
$12$ उपलब्ध पाठक्रमों, जिनके $5$ भाषा के पाठयक्रम है, में से एक लड़के को पाँच पाठयक्रम लेने हैं। यदि वह अधिकतम दो भाषा के पाठयक्रम ले सकता है, तो उसके द्वारा पाँच पाठयक्रम लेने के तरीकों की संख्या है__________.