Determine whether each of the following relations are reflexive, symmetric and transitive :

Relation $\mathrm{R}$ in the set $\mathrm{A}=\{1,2,3, \ldots, 13,14\}$ defined as $\mathrm{R}=\{(x, y): 3 x-y=0\}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\mathrm{A}=\{1,2,3 \ldots 13,14\}$

$\mathrm{R}=\{(x, y): 3 x-y=0\}$

$\therefore  $ $\mathrm{R} =\{(1,3),\,(2,6),\,(3,9),\,(4,12)\}$

$\mathrm{R}$ is not reflexive since $(1,1),(2,2) \ldots(14,\,14) \notin \mathrm{R}$

Also, $\mathrm{R}$ is not symmetric as $(1,3) \in \mathrm{R},$ but $(3,1) \notin \mathrm{R}$ . $[3(3)-1 \neq 0]$

Also, $\mathrm{R}$ is not transitive as $(1,3),\,(3,9) \in \mathrm{R},$ but $(1,9) \notin \mathrm{R}$ . $[3(1)-9 \neq 0]$

Hence, $\mathrm{R}$ is neither reflexive, nor symmetric, nor transitive.

Similar Questions

Let $R$ and $S$ be two non-void relations on a set $A$. Which of the following statements is false

Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{R}=\{(1,2),(2,3),(1,4)\}$ be a relation on $\mathrm{A}$. Let $\mathrm{S}$ be the equivalence relation on $A$ such that $\mathrm{R} \subset \mathrm{S}$ and the number of elements in $\mathrm{S}$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is...............

  • [JEE MAIN 2024]

The relation $R$ defined in $N$ as $aRb \Leftrightarrow b$ is divisible by $a$ is

Let $n$ be a fixed positive integer. Define a relation $R$ on the set $Z$ of integers by, $aRb \Leftrightarrow n|a - b$|. Then $R$ is

Let $R$ be a relation on $N \times N$ defined by $(a, b) R$ (c, d) if and only if $a d(b-c)=b c(a-d)$. Then $R$ is

  • [JEE MAIN 2023]