Consider set $A = \{1,2,3\}$ . Number of symmetric relations that can be defined on $A$ containing the ordered pair $(1,2)$ & $(2,1)$ is

  • A

    $18$

  • B

    $16$

  • C

    $24$

  • D

    $32$

Similar Questions

The relation "less than" in the set of natural numbers is

Determine whether each of the following relations are reflexive, symmetric and transitive :

Relation $\mathrm{R}$ in the set $\mathrm{A}=\{1,2,3, \ldots, 13,14\}$ defined as $\mathrm{R}=\{(x, y): 3 x-y=0\}$

Let $A=\{1,2,3,4\}$ and $R$ be a relation on the set $A \times A$ defined by $R=\{((a, b),(c, d)): 2 a+3 b=4 c+5 d\}$. Then the number of elements in $R$ is:

  • [JEE MAIN 2023]

Show that the relation $\mathrm{R}$ in the set $\mathrm{Z}$ of integers given by $\mathrm{R} =\{(\mathrm{a}, \mathrm{b}): 2$ divides $\mathrm{a}-\mathrm{b}\}$ is an equivalence relation.

Show that the relation $R$ in the set $R$ of real numbers, defined as $R =\left\{(a, b): a \leq b^{2}\right\}$ is neither reflexive nor symmetric nor transitive.