કોઈ ચોક્કસ સમયે કોઈ એક નગરમાં વસતા મનુષ્યોના ગણ $A$ પર વ્યાખ્યાયિત સંબંધ $R =\{(x, y): x$ અને $y$ એક જ વિસ્તારમાં રહે છે. $\}$ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?
$R =\{( x , y ): x$ and $y $ live in the same locality $\}$
Clearly, $( x , x ) \in R$ as $x$ and $x$ is the same human being.
$\therefore R$ is reflexive.
If $(x, y) \in R,$ then $x$ and $y$ live in the same locality.
$\Rightarrow y$ and $x$ live in the same locality.
$\Rightarrow(y, x) \in R$
$\therefore R$ is symmetric.
Now, let $(x, y) \in R$ and $(y, z) \in R$
$\Rightarrow x$ and $y$ live in the same locality and $y$ and $z$ live in the same locality.
$\Rightarrow x$ and $z$ live in the same locality.
$\Rightarrow(x, z) \in R$
$\therefore R$ is transitive.
Hence, $R$ is reflexive, symmetric and transitive.
$R$ પર વ્યાખ્યાયિત સંબંધ $S =\left\{(a, b): a \leq b^{3}\right\}$ એ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે ચકાસો.
જો $A = \left\{ {x \in {z^ + }\,:x < 10} \right.$ અને $x$ એ $3$ અથવા $4$ નો ગુણક હોય $\}$, જ્યાં $z^+$ એ ધન પૂર્ણાક નો ગણ હોય તો $A$ પર ના સંમિત સબંધો નો સંખ્યા મેળવો.
ધારો કે $R$ એ ، જો $2 a+3 b$ એ $5$ નો ગુણિત હોય, તો $a R b, a, b \in N$ ' મુજબ વ્યાખ્યાયિત $N$ પરનો સંબંધ છે. તો $R$ એ
સંબંધ $R$ એ અરિક્ત ગણ $A$ પરનો સામ્ય સંબધ હોય તો $R$ એ . . . ગુણધર્મનું પાલન કરવું જોઇયે.
સંબંધ $R =\{(a, b): \operatorname{gcd}(a, b)=1,2 a \neq b , a , b \in Z \}$ એ :