- Home
- Standard 11
- Mathematics
8. Sequences and Series
normal
Different $A.P.$'s are constructed with the first term $100$,the last term $199$,And integral common differences. The sum of the common differences of all such, $A.P$'s having at least $3$ terms and at most $33$ terms is.
A
$54$
B
$52$
C
$56$
D
$53$
(JEE MAIN-2022)
Solution
$1^{\text {st }} \text { term }=100=a$
Last term $=199=\ell$
If $3$ term
$a, a+d, a+2 d$
$a _{ a }=\ell= a +( n -1) d$
$d _{ i }=\frac{\ell- a }{ n – l }$
$n \rightarrow$ number of terms
$n =3, d _{1}=\frac{199-100}{2}$
$=\frac{99}{2} \notin I$
$n =4, d _{2}=\frac{99}{3}=33 \in I$
$n =10, d _{3}=\frac{99}{9}=11 \in I$
$n =12, d _{4}=\frac{99}{11}=9 \in I$
$\therefore \sum d _{ i }=33+11+9=53$
Standard 11
Mathematics