અલગ અલગ સમાંતર શ્રેણી કે જેનું પ્રથમ પદ $100$ અને અંતિમ પદ $199$ છે અને સમાન્ય તફાવત પૂર્ણાંક છે. જો આવી સમાંતર શ્રેણીના બધાજ સામાન્ય તફાવતનો સરવાળો મેળવો કે જેમાં ઓછામાં ઓછા $3$ પદો હોય અને વધુમાં વધુ $33$ પદો હોય.
$54$
$52$
$56$
$53$
જો એક વધતી સમાંતર શ્રેણી $b _{1}, b _{2}, b _{3}, \ldots b _{11}$ નો વિચરણ $90$ હોય તો આ સમાંતર શ્રેણીનો સામાન્ય તફાવત શોધો
સમાંતર શ્રેણીના પ્રથમ $p$ પદોનો સરવાળો, પ્રથમ $q$ પદોના સરવાળા જેટલો થાય છે, તો પ્રથમ $(p+q)$ પદોનો સરવાળો શોધો.
ધારો કે $a_1, a_2, \ldots, a_n$ સમાંતર શ્રેણીમાં છ. જો $a_5=2 a_7$ અને $a_{11}=18$ હોય, તો $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)=................$
જો $a^2 (b + c), b^2 (c + a), c^2 (a + b)$ સમાંતર શ્રેણીમાં હોય, તો $a, b, c$ કઈ શ્રેણીમાં હોય ?
પ્રથમ ત્રણ પદો લખો : $a_{n}=\frac{n-3}{4}$