Write the first five terms of the following sequence and obtain the corresponding series :

$a_{1}=-1, a_{n}=\frac{a_{n-1}}{n}, n\, \geq\, 2$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a_{1}=-1, a_{n}=\frac{a_{n-1}}{n}, n\, \geq \,2$

$\Rightarrow a_{2}=\frac{a_{1}}{2}=\frac{-1}{2}$

$a_{3}=\frac{a_{2}}{3}=\frac{-1}{6}$

$a_{4}=\frac{a_{3}}{4}=\frac{-1}{24}$

$a_{5}=\frac{a_{4}}{5}=\frac{-1}{120}$

Hence, the first five terms of the sequence are $-1, \frac{-1}{2}, \frac{-1}{6}, \frac{-1}{24}$ and $\frac{-1}{120}$

The corresponding series is $(-1)+\left(\frac{-1}{2}\right)+\left(\frac{-1}{6}\right)+\left(\frac{-1}{24}\right)+\left(\frac{-1}{120}\right)+\ldots$

Similar Questions

The number of terms common between the two series $2 + 5 + 8 +.....$ upto $50$ terms and the series $3 + 5 + 7 + 9.....$ upto $60$ terms, is

Let $a , b , c$ be in arithmetic progression. Let the centroid of the triangle with vertices $( a , c ),(2, b)$ and $(a, b)$ be $\left(\frac{10}{3}, \frac{7}{3}\right)$. If $\alpha, \beta$ are the roots of the equation $ax ^{2}+ bx +1=0$, then the value of $\alpha^{2}+\beta^{2}-\alpha \beta$ is ....... .

  • [JEE MAIN 2021]

If $< {a_n} >$ is an $A.P$. and $a_1 + a_4 + a_7 + .......+ a_{16} = 147$, then $a_1 + a_6 + a_{11} + a_{16}$ is equal to

Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=\frac{2 n-3}{6}$

The $20^{\text {th }}$ term from the end of the progression $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots .,-129 \frac{1}{4}$ is :-

  • [JEE MAIN 2024]