Draw appropriate Venn diagram for each of the following:
$(A \cap B)^{\prime}$
Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find
$\left(A^{\prime}\right)^{\prime}$
Let $U = \{ 1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9,\,10\} $, $A = \{ 1,\,2,\,5\} ,\,B = \{ 6,\,7\} $, then $A \cap B'$ is
$(B-C)^{\prime}$
If $U=\{a, b, c, d, e, f, g, h\},$ find the complements of the following sets:
$C=\{a, c, e, g\}$
If $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ and $B =\{2,3,5,7\} .$ Verify that
$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
Confusing about what to choose? Our team will schedule a demo shortly.