वैद्युत क्षेत्र ${r^o}$ के साथ परिवर्तित होता है
एक वैद्युत द्विध्रुव के कारण
एक बिन्दु आवेश के कारण
आवेश एक अनंत चादर के कारण
अनंत लम्बाई के रेखीय आवेश के कारण
(c) $E = \sigma / (2\varepsilon _0)$
एक बिन्दु आवेश $Q$, एक एकसमान रेखीय आवेश घनत्व (Linear charge density) $\lambda$ वाले अनन्त लम्बाई तके तार तथा एक एकसमान पृष्ठ आवेश घनत्व (uniform surface charge density) $\sigma$ वाले अनन्त समतल चादर के कारण $r$ दूरी पर विद्युत क्षेत्र की तीव्रतायें क्रमश: $E_1(r), E_2(r)$ तथा $E_3(r)$ हैं यदि एक दी गई दूरी $r_0$ पर $E_1\left(r_0\right)=E_2\left(r_0\right)=E_3\left(r_0\right)$ तब
एकसमान रूप से आवेशित गोले की त्रिज्या $R$ है। इसके केन्द्र से $r$ दूरी एवं उत्पन्न विद्युत क्षेत्र के बीच सही ग्राफीय निरूपण होगा
यदि पृथक्कृत कुचालक गोले की त्रिज्या $R$ तथा आवेश घनत्व $\rho $ है। गोले के केन्द्र से $r$ दूरी $(r\; < \;R)$ पर विद्युत क्षेत्र होगा
केन्द्र से $\mathrm{r}$ दूरी के साथ $\mathrm{R}$ त्रिज्या के एक एकसमान आवेशित कुचालक ठोस गोले के कारण वैद्युत क्षेत्र का अभिरेखीय परिवर्तन निम्न प्रकार प्रंदर्शित है:
$12\, cm$ त्रिज्या वाले एक गोलीय चालक के पृष्ठ पर $1.6 \times 10^{-7} \,C$ का आवेश एकसमान रूप से वितरित है।
$(a)$ गोले के अंदर
$(b)$ गोले के ठीक बाहर
$(c)$ गोले के केंद्र से $18 cm$ पर अवस्थित, किसी बिंदु पर विध्यूत क्षेत्र क्या होगा?
Confusing about what to choose? Our team will schedule a demo shortly.