The electric field $\vec E = {E_0}y\hat j$ acts in the space in which a cylinder of radius $r$ and length $l$ is placed with its axis parallel to $y-$ axis. The charge inside the volume of cylinder is
${E_0}{\varepsilon _0}\frac{{{l^2}}}{2}$
${E_0}{\varepsilon _0}\pi {r^2}{l^2}$
${E_0}{\varepsilon _0}\pi {r^2}l$
$2{E_0}{\varepsilon _0}\pi {r^2}l$
Two concentric conducting thin spherical shells $A$ and $B$ having radii ${r_A}$ and ${r_B}$ (${r_B} > {r_A})$ are charged to ${Q_A}$ and $ - {Q_B}$$(|{Q_B}|\, > \,|{Q_A}|)$. The electrical field along a line, (passing through the centre) is
The electric field at a distance $\frac{3R}{2}$ from the centre of a charged conducting spherical shell of radius $R$ is $E.$ The electric field at a distance $\frac{R}{2}$ from the centre of the sphere is
Electric field intensity at a point in between two parallel sheets with like charges of same surface charge densities $(\sigma )$ is
Find the force experienced by the semicircular rod charged with a charge $q$, placed as shown in figure. Radius of the wire is $R$ and the line of charge with linear charge density $\lambda $ is passing through its centre and perpendicular to the plane of wire.
Consider a uniform spherical charge distribution of radius $R_1$ centred at the origin $O$. In this distribution, a spherical cavity of radius $R_2$, centred at $P$ with distance $O P=a=R_1-R_2$ (see figure) is made. If the electric field inside the cavity at position $\overrightarrow{ r }$ is $\overrightarrow{ E }(\overrightarrow{ r })$, then the correct statement$(s)$ is(are) $Image$