- Home
- Standard 11
- Mathematics
Equation $\frac{3}{{x - {a^3}}} + \frac{5}{{x - {a^5}}} + \frac{7}{{x - {a^7}}} = 0,a > 1$ has
Two real and positive roots
Two real and negative roots
No real roots
one positive and other negative roots
Solution
Equation $3\left(x-a^{5}\right)\left(x-a^{7}\right)+5\left(x-a^{3}\right)\left(x-a^{7}\right)+7\left(x-a^{3}\right)\left(x-a^{5}\right)=0$
${\rm{ Now }}\,\,\,a > 1 \Rightarrow {a^3} < {a^5} < {a^7}$
${\rm{ Let }}f(x) = 3\left( {x – {a^5}} \right)\left( {x – {a^7}} \right) + 5\left( {x – {a^5}} \right)\left( {x – {a^7}} \right) + $
${7\left(x-a^{3}\right)\left(x-a^{5}\right) /\left(x-a^{3}\right)\left(x-a^{3}\right)\left(x-a^{7}\right)} $
$f\left( {{a^{3 – }}} \right) < 0,f\left( {{a^{3 + }}} \right) > 0,f\left( {{a^{5 – }}} \right) < 0$
$f\left( {{a^{5 + }}} \right) > 0,f\left( {{a^{7 – }}} \right) < 0\,\,and\,\,f\left( {{a^{7 + }}} \right) > 0$
$\therefore$ Equation has one root lying in $\left(a^{3}, a^{5}\right)$ and other in $\left(a^{5}, a^{7}\right)$
Now $a>1 \therefore$ Roots are real and positive