સમીકરણ $\frac{3}{{x - {a^3}}} + \frac{5}{{x - {a^5}}} + \frac{7}{{x - {a^7}}} = 0,a > 1$ ને
બે વાસ્તવિક અને ધન બીજો મળે
બે વાસ્તવિક અને ઋણ બીજો મળે
વાસ્તવિક બીજો મળે નહીં
એક ધન અને એક ઋણ બીજ મળે
જો ${\rm{x}}$ વાસ્તવિક હોય , તો $\,\frac{{3{x^2} + \,9x\, + \,17}}{{3{x^2}\, + \,9x\, + \,7}}$ નું મહતમ મૂલ્ય કેટલું થાય ?
સમીકરણ $||x\ -2|\ -|3\ -x||\ =\ 2\ -a$ ના ઉકેલ માટે $a$ ની પૂર્ણાક સંખ્યાઓનો સરવાળો કેટલો થાય?
ધારો કે $\alpha_1, \alpha_2, \ldots, \alpha_7$ એ સમીકરણ $x^7+3 x^5-13 x^3-15 x=0$ નાં બીજ છે અને $\left|a_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$ તો $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6=......$
જો $\alpha$, $\beta$ ,$\gamma$ એ સમીકરણ $x^3 -x -1 = 0$ ના ઉકેલો હોય તો જે સમીકરણના ઉકેલો $\frac{1}{{\beta + \gamma }},\frac{1}{{\gamma + \alpha }},\frac{1}{{\alpha + \beta }}$ હોય તે સમીકરણ મેળવો
ધારો કે $\mathrm{S}=\left\{\sin ^2 2 \theta:\left(\sin ^4 \theta+\cos ^4 \theta\right) x^2+(\sin 2 \theta) x+\left(\sin ^6 \theta+\cos ^6 \theta\right)=0\right.$ ને વાસ્તવિક બીજ છે $\}$. જો $\alpha$ અને $\beta$ અનુક્રમે ગણ $S$ ના ન્યૂનતમ અને મહત્તમ સભ્યો હોય, તો $3((\alpha-$ $\left.2)^2+(\beta-1)^2\right)=$ ..........