Equation of the ellipse whose axes are the axes of coordinates and which passes through the point  $(-3,1) $ and has eccentricity $\sqrt {\frac{2}{5}} $ is 

  • [AIEEE 2011]
  • A

    $5{x^2} + 3{y^2} - 48 = 0$

  • B

    $\;3{x^2} + 5{y^2} - 15 = 0$

  • C

    $\;5{x^2} + 3{y^2} - 32 = 0$

  • D

    $\;3{x^2} + 5{y^2} - 32 = 0$

Similar Questions

Let $A = \left\{ {\left( {x,y} \right):\,y = mx + 1} \right\}$ 

      $B = \left\{ {\left( {x,y} \right):\,\,{x^2} + 4{y^2} = 1} \right\}$ 

$C = \left\{ {\left( {\alpha ,\beta } \right):\,\left( {\alpha ,\beta } \right) \in A\,\,and\,\,\left( {\alpha ,\beta } \right) \in B\,\,and\,\alpha \, > 0} \right\}$ . 

If set $C$ is singleton set then sum of all possible values of $m$ is

Let $L$ be a common tangent line to the curves $4 x^{2}+9 y^{2}=36$ and $(2 x)^{2}+(2 y)^{2}=31$. Then the square of the slope of the line $L$ is ..... .

  • [JEE MAIN 2021]

The distance between the focii of the ellipse $(3x - 9)^2 + 9y^2 =(\sqrt 2 x + y +1)^2$ is-

The equation of the ellipse whose latus rectum is $8$ and whose eccentricity is $\frac{1}{{\sqrt 2 }}$, referred to the principal axes of coordinates, is

If $x^{2}+9 y^{2}-4 x+3=0, x, y \in R$, then $x$ and $y$ respectively lie in the intervals:

  • [JEE MAIN 2021]