The normal at a variable point $P$ on an ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}}= 1$  of eccentricity e meets the axes of the ellipse in $ Q$  and $R$  then the locus of the mid-point of $QR$  is a conic with an eccentricity $e' $  such that :

  • A

    $e'$ is independent of  $e$

  • B

    $e ' = 1$

  • C

    $e' = e$

  • D

    $e' = 1/e$

Similar Questions

Let $S=\left\{(x, y) \in N \times N : 9(x-3)^{2}+16(y-4)^{2} \leq 144\right\}$ and $ T=\left\{(x, y) \in R \times R :(x-7)^{2}+(y-4)^{2} \leq 36\right\}$ Then $n ( S \cap T )$ is equal to $......$

  • [JEE MAIN 2022]

The equation of an ellipse, whose vertices are $(2, -2), (2, 4)$ and eccentricity $\frac{1}{3}$, is

The line $y = mx + c$ is a normal to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{a^2}}} = 1$, if $c = $

The angle between the pair of tangents drawn to the ellipse $3{x^2} + 2{y^2} = 5$ from the point $(1, 2)$, is

Let the foci and length of the latus rectum of an ellipse $\frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1, \mathrm{a}>\mathrm{b}$ be $( \pm 5,0)$ and $\sqrt{50}$, respectively. Then, the square of the eccentricity of the hyperbola $\frac{\mathrm{x}^2}{\mathrm{~b}^2}-\frac{\mathrm{y}^2}{\mathrm{a}^2 \mathrm{~b}^2}=1$ equals

  • [JEE MAIN 2024]