Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

The normal at a variable point $P$ on an ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}}= 1$  of eccentricity e meets the axes of the ellipse in $ Q$  and $R$  then the locus of the mid-point of $QR$  is a conic with an eccentricity $e' $  such that :

A

$e'$ is independent of  $e$

B

$e ' = 1$

C

$e' = e$

D

$e' = 1/e$

Solution

Normal at point $P(a \cos \theta, b \sin \theta)$ is

$\frac{a x}{\cos \theta}-\frac{b y}{\sin \theta}=a^{2}-b^{2}$

It meets axes at $Q\left(\frac{\left(a^{2}-b^{2}\right) \cos \theta}{a}, 0\right)$

and $R\left(0,-\frac{\left(a^{2}-b^{2}\right) \sin \theta}{b}\right)$

Let $T(h, k)$ is a midpoint of $Q R$ Then $2 h=\frac{\left(a^{2}-b^{2}\right) \cos \theta}{a}$

and $2 k=-\frac{\left(a^{2}-b^{2}\right) \sin \theta}{b}$

$\Rightarrow \cos ^{2} \theta+\sin ^{2} \theta=\frac{4 h^{2} a^{2}}{\left(a^{2}-b^{2}\right)^{2}}+\frac{4 k^{2} b^{2}}{\left(a^{2}-b^{2}\right)^{2}}=1$

$\Rightarrow$ Locus is $\frac{x^{2}}{\frac{\left(a^{2}-b^{2}\right)^{2}}{4 a^{2}}}+\frac{y^{2}}{\frac{\left(a^{2}-b^{2}\right)^{2}}{4 b^{2}}}=1$

which is an ellipse, having eccentricity $e^{\prime},$ given by $e^{r 2}=1-\frac{\frac{\left(a^{2}-b^{2}\right)^{2}}{4 a^{2}}}{\frac{\left(a^{2}-b^{2}\right)^{2}}{4 b^{2}}}=1-\frac{b^{2}}{a^{2}}=e^{2}$

$e^{\prime}=e$

Note : In Equation (ii), $\frac{\left(a^{2}-b^{2}\right)}{4 a^{2}}<\frac{\left(a^{2}-b^{2}\right)}{4 b^{2}}$. Hence, $x$ -axis is minor axis.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.