In the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, the equation of diameter conjugate to the diameter $y = \frac{b}{a}x$, is
$y = - \frac{b}{a}x$
$y = - \frac{a}{b}x$
$x = - \frac{b}{a}y$
None of these
A focus of an ellipse is at the origin. The directrix is the line $x = 4$ and the eccentricity is $ \frac{1}{2}$ . Then the length of the semi-major axis is
Slope of common tangents of parabola $(x -1)^2 = 4(y -2)$ and ellipse ${\left( {x - 1} \right)^2} + \frac{{{{\left( {y - 2} \right)}^2}}}{2} = 1$ are $m_1$ and $m_2$ ,then $m_1^2 + m_2^2$ is equal to
If the tangent at a point on the ellipse $\frac{{{x^2}}}{{27}} + \frac{{{y^2}}}{3} = 1$ meets the coordinate axes at $A$ and $B,$ and $O$ is the origin, then the minimum area (in sq. units) of the triangle $OAB$ is
If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ coincide, then the value of ${b^2}$ is
The centre of an ellipse is $C$ and $PN$ is any ordinate and $A$, $A’$ are the end points of major axis, then the value of $\frac{{P{N^2}}}{{AN\;.\;A'N}}$ is