दीर्घवृत्त का समीकरण जिसकी उत्केन्द्रता $\frac{1}{2}$ तथा नाभियाँ $( \pm {\rm{ }}1,\;0)$ हैं, है
$\frac{{{x^2}}}{3} + \frac{{{y^2}}}{4} = 1$
$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{3} = 1$
$\frac{{{x^2}}}{3} + \frac{{{y^2}}}{4} = \frac{4}{3}$
इनमें से कोई नहीं
माना $E _{1}: \frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1, a > b$ एक दीर्घवत्त है। माना $E _{2}$ एक और दीर्घवत्त है, जो $E _{1}$ के दीर्घ अक्ष के छोरों को स्पर्श करता है तथा $E_{2}$ की नाभियोँ, $E_{1}$ के लघु अक्ष के छोरों पर है। यदि $E _{1}$ तथा $E _{2}$ की उत्केन्द्रता बराबर है, तो उसका मान है -
यदि एक दीर्घवृत्त के दीर्घ अक्ष की लम्बाई, इसके लघु अक्ष की लम्बाई की तिगुनी है, तो इसकी उत्केन्द्रता होगी
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
शीर्षों $(\pm 6,0),$ नाभियाँ $(±4,0)$
दीर्घवृत्त की जीवा के ध्रुवों का बिन्दुपथ होगा
दीर्घवृत्त $3{x^2} + 2{y^2} = 5$ पर बिन्दु $(1, 2)$ से खींची गयीं स्पर्श रेखाओं के बीच कोण है