दीर्घवृत्त  $25{x^2} + 9{y^2} - 150x - 90y + 225 = 0$ की उत्केन्द्रता  $e = $

  • A

    $2\over5$

  • B

    $3\over5$

  • C

    $4\over5$

  • D

    $1\over5$

Similar Questions

एक व्यक्ति रेसकोर्स के चारों और दौड़ता हुआ यह नोट करता है कि उससे दो ध्वज स्तम्भों की दूरियों का योग सदैव $10$ मीटर रहता है और ध्वज स्तम्भों  के बीच दूरी $8$ मीटर है। दौडने के मार्ग द्वारा परिबद्ध क्षेत्रफल, वर्ग मीटर में है

यदि अतिपरवलय ${x^2} - {y^2} = 9$ की एक स्पर्श जीवा $x = 9$ है, तो सम्बन्धित युगल स्पर्श रेखा $(Pair\,\, of\,\, tangents)$ का समीकरण है

  • [IIT 1999]

उस दीर्घवृत्त, जिसके अक्ष निर्देशांक अक्ष है, जो बिन्दु $(-3,1)$ से होकर जाता है तथा जिसकी उत्केन्द्रता $\sqrt{\frac{2}{5}}$ है, का समीकरण है:

  • [AIEEE 2011]

यदि एक दीर्घवृत्त के नाभिलंब की लंबाई $4$ इकाई हैं तथा एक नाभि तथा दीर्घ अक्ष पर स्थित निकटतम शीर्ष के बीच की दूरी $\frac{3}{2}$ इकाई है, तो उसकी उत्केन्द्रता है

  • [JEE MAIN 2018]

ऐसी दो सरल रेखाओं (straight lines) पर विचार कीजिये, जिनमें से प्रत्येक, वृत्त (circle) $x^2+y^2=\frac{1}{2}$ और परवलय (parabola) $y^2=4 x$ दोनों पर ही स्पर्शी (tangent) है। माना कि ये रेखाएं बिंदु $Q$ पर प्रतिच्छेद (intersect) करती हैं। एक ऐसे दीर्घवृत्त (ellipse) पर विचार कीजिये जिसका केंद्र (centre) मूलर्बिंदु (origin) $O(0,0)$ पर है और जिसका अर्ध-दीर्घाक्ष (semi-major axis) $O Q$ है। यदि इस दीर्घवृत के लघु अक्ष (minor axis) की लम्बाई $\sqrt{2}$ है, तब निम्नलिखित में से कौन सा (से) कथन सत्य है (हैं)?

$(A)$ दीर्घवृत्त की उत्केन्द्रता (eccentricity) $\frac{1}{\sqrt{2}}$ है और नाभिलम्ब जीवा (latus rectum) की लम्बाई 1 है

$(B)$ दीर्घवृत्त की उत्केन्द्रता $\frac{1}{2}$ है और नाभिलम्ब जीवा की लम्बाई $\frac{1}{2}$ है

$(C)$ रेखाओं $x=\frac{1}{\sqrt{2}}$ व $x=1$ के बीच दीर्घवृत्त द्वारा परिबद्ध (bounded) क्षेत्र (region) का क्षेत्रफल (area) $\frac{1}{4 \sqrt{2}}(\pi-2)$ है

$(D)$ रेखाओं $x=\frac{1}{\sqrt{2}}$ व $x=1$ के बीच दीर्घवृत्त द्वारा परिबद्ध क्षेत्र का क्षेत्रफल $\frac{1}{16}(\pi-2)$ है

  • [IIT 2018]