दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$
The given equation is $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$ or $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{10^{2}}=1$
Here, the denominator of $\frac{y^{2}}{100}$ is greater than the denominator of $\frac{x^{2}}{25}$
Therefore, the major axis is along the $y-$ axis, while the minor axis is along the $x-$ axis.
On comparing the given equation with $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1,$ we obtain $b=5$ and $a=10$
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{100-25}=\sqrt{75}=5 \sqrt{3}$
Therefore,
The coordinates of the foci are $(0, \,\pm 5 \sqrt{3})$
The coordinates of the vertices are $(0,\,±10)$
Length of major axis $=2 a=20$
Length of minor axis $=2 b=10$
Eccentricity, $e=\frac{c}{a}=\frac{5 \sqrt{3}}{10}=\frac{\sqrt{3}}{2}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 25}{10}=5$
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के बिन्दु $'\theta '$ की नाभि से दूरी होगी
दीर्घवृत्त $3 x ^{2}+5 y ^{2}=32$ के बिन्दु $P (2,2)$ पर खींची गई स्पर्श रेखा तथा अभिलंब, $x$-अक्ष को क्रमशः $Q$ तथा $R$ पर काटते है। तो त्रिभुज $PQR$ का क्षेत्रफल (वर्ग इकाइयों में) हैं
माना $a , b$ तथा $\lambda$ धनात्मक वास्तविक संख्यायें है। माना परवलय $y ^2=4 \lambda x$ के नाभिलम्ब का अंतिम बिन्दु $P$ है तथा माना दीर्घवृत्त $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{ b ^2}=1$, बिन्दु $P$ से गुजरता है। यदि परवलय तथा दीर्घवृत्त के बिन्दु $P$ पर खींची गई स्पर्श रेखायें एक दूसरे के लम्बवत् हो, तो दीर्घवृत्त की उत्केन्द्रता होगी
यदि $x^{2}+9 y ^{2}-4 x+3=0, x, y \in R$ हैं, तो $x$ तथा $y$ क्रमशः निम्न में से किस अंतराल में है?
दीर्घवृत्त का समीकरण जिसकी उत्केन्द्रता $\frac{1}{2}$ तथा नाभियाँ $( \pm {\rm{ }}1,\;0)$ हैं, है