मूल बिन्दु से वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$ पर खींची स्पर्श रेखायुग्म का समीकरण है

  • A

    $gx + fy + c({x^2} + {y^2})$

  • B

    ${(gx + fy)^2} = {x^2} + {y^2}$

  • C

    ${(gx + fy)^2} = {c^2}({x^2} + {y^2})$

  • D

    ${(gx + fy)^2} = c({x^2} + {y^2})$

Similar Questions

वृत्त $x ^{2}+ y ^{2}=4$ के बिंदु $(\sqrt{3}, 1)$ पर खींची गई स्पर्श रेखा और अभिलंब तथा $x$-अक्ष एक त्रिभुज बनाते हैं। इस त्रिभुज का (वर्ग इकाईयों में) क्षेत्रफल है 

  • [JEE MAIN 2019]

रेखा $5x + 12y + 8 = 0$ के लम्बवत् वृत्त ${x^2} + {y^2} - 22x - 4y + 25 = 0$ की स्पर्श रेखाओं के समीकरण हैं

यदि वक्र $x^{2}=y-6$ के बिंदु $(1,7)$ पर बनी स्पशरिखा वृत्त $x^{2}+y^{2}+16 x+12 y+c=0$ को स्पर्शे करती है, तो $c$ का मान है

  • [JEE MAIN 2018]

यदि $OA$ तथा $OB$ मूल बिन्दु $O$ से वृत्त ${x^2} + {y^2} - 6x - 8y + 21 = 0$ पर खींची गयी रेखाएँ हों तो $AB =$

 यदि $5x - 12y + 10 = 0$ तथा $12y - 5x + 16 = 0$ किसी वृत्त की स्पर्शियों के समीकरण हैं, तब इस वृत्त की त्रिज्या है